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The patent process is representative of a nationwide means for innovations and new 

ideas to be recognized. The U.S. Patents Office, since its inception in 1790, has issued 

nearly five million patents. These patents span from the U.S. Patent #1, which was for an 

improvement "in the making of Pot ash and Pearl ash by a new Apparatus and Process" to 

today's patents which deal with technologies and mediums that were unimaginable at the 

Patent Offices' inception. The purpose of this study is to determine what social and 

economic factors at the federal level have the highest impact on national productivity 

measured by the number of patents applied for and/or granted each year. Using Machine 

Learning algorithms and predictive analysis on fifty years worth of data to determine what 

macroeconomic and educational factors have the most impact on patents.  
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The first part of this study describes the methods and algorithms used during this 

research. The second part of this study discusses the results and what those results reveal 

about the impact of education and economic factors as they relate to national creativity / 

intellectual productivity. The goal of this study is to determine what factors affect national 

intellectual productivity in a given year. This data will be useful for governments, both 

local and federal, when faced with educational and economic issues. 
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Chapter 1: Introduction 

 

1.1 Overview 

A nation‟s intellectual productivity serves as a contributing factor when 

considering overall prosperity on a national level. Economic and educational policies set in 

place by the federal government designed to have an impact on a particular area inevitably 

influence sometimes unforeseen aspects of other sectors. With a better understanding of 

what those unforeseen aspects are, a more resourceful federal government will emerge. 

 

1.2 Problem Statement 

Macroeconomic fiscal and monetary policies are two types of strategies that the 

federal government adjusts in order to maintain a stable and prosperous economy. When 

the Federal Reserve Bank adjusts the Federal Funds rate, which has a direct affect on short 

term interest rates such as the prime rate, it is clear that the primary concern is with 

economic growth and inflation [16].  

This study gives quantitative evidence that the government needs to closely observe 

specific factors in macroeconomic planning. In particular, this study lends evidence that 

one of the government‟s concerns should be with the influence that their strategic decisions 

have on national intellectual productivity. This study‟s intent is not to determine the most 

predictive method for forecasting national intellectual productivity, but rather lend 
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evidence to the fact that economic and educational factors both play a part in the nation‟s 

overall productivity. Machine learning analysis is used in this study to show these 

relationships, but recent research by Ben-David and Frank [35] also shows the importance 

and relevance of “hand crafted” expert systems developed by subject matter experts that  

have a more detailed understanding of the data itself and the relationships between the 

individual attributes. 

 Intellectual productivity is known to be one of the major factors in creating 

technologies that form industries producing capital; and therefore becoming major sources 

of prosperity. Wireless and optical communication, biotechnology, and nanotechnology are 

examples of such intellectual endowers resulting in major industries that shape the U.S. 

and international economy. These “waves” of technological innovations are important 

factors to predict, plan, and analyze in order to ensure economic prosperity.  

Knowing the role of education on intellectual productivity, an important factor to 

consider is the government‟s educational plans. The federal government‟s role in education 

is not simple to define. The Department of Education has a mission to promote student 

achievement and preparation for global competitiveness by fostering educational 

excellence and ensuring equal access [11], by establishing policies on federal financial aid 

for education, and distributing as well as monitoring those funds.  

Taking into account the framework introduced by Furman [13], national innovative 

capacity is understood as an economy‟s potential for producing a stream of co mmercially 

relevant innovations. In order for an individual or company to capitalize financially on 
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those innovations a patent is required. Therefore, while examining national productivity 

the three main elements of national innovative capacity [14] will be observed as well. 

 

 

Figure 1.1: National Innovative Capacity (Courtesy of Furman and Hayes [14]) 

 

1. The Common Innovation Infrastructure (i.e. Cumulative technological 

sophistication, Human capital and financial resources available for R&D activity, 

and resource commitments and policy choices).  

2. The Cluster-Specific Environment for Innovation (i.e. the related and supporting 

industries and the demand conditions.  

3. The quality of linkages between the infrastructure and the environment.  
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Machine learning methods have been used in many different industries to analyze a 

wide array of issues [37] [40]. While there have been attempts to intuitively predict classes of 

industries that are more likely to impact the future economy, there has been little work 

done on quantitative analysis of factors that most identify and impact the innovative 

capacity / potential of the nation. This study will apply advanced machine learning 

methods to analyze different attributes as potential factors impacting intellectual 

productivity and identify the most significant attributes among this list as described in 

Specific Aims. 

 

1.3 Specific Aim 

The main objective of this project is to quantitatively analyze various 

macroeconomic measures and identify the ones that can most effectively help maintain a 

stable level of intellectual productivity, which in turn facilitates a more stable and 

prosperous economy. Specifically, this study uses public education enrollment statistics  

[21], as well as private school enrollment to determine if there is  a significant relation 

between private and public school enrollment and national intellectual productivity.  

Starting with a data set of both economic and educational data (see Appendix A for 

full list of dataset) this study determines the most predictive attributes that relate to 

national intellectual productivity. Macroeconomic and educational data were chosen 

because of the federal government‟s impact on policies and funding. Whether that impact 

is direct, such is the case with the interest rate, or the impact is indirect as with the 
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unemployment rate, it is clear that the actions of the federal government have an effect on 

those attributes. 

Machine learning methods including M5 Rules [2] [3] [4], Decision Table [5], and 

Conjunctive Rule will be used for analyzing the data. The use of the rule-based system will 

allow human users to understand the reasoning behind the extracted knowledge.  

 

1.3.1 Patent Issuance as a Measure of National Productivity  

Patent issuance measures one particular type of output of national productivity – 

intellectual productivity. A patent grants the right to exclude others from making, using, 

offering for sale, or selling the invention throughout the United States or importing the 

invention into the United States [15].  

Even though patent issuance is not the only measure of intellectual productivity, 

due to the legal structure that protects the rights for the intellectual property, it is logical 

that patent issuance would be the most significant measure to assess intellectual 

productivity. It is understandable that not all patents are pursued as a commercial product 

and not all commercial products formed out of a patent are truly innovative; however, 

assuming that the ratio of the patents that contribute to intellectual productively remain 

relatively constant, the total number of patents issued is a reliable measure to assess 

national intellectual productivity.  
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1.3.2 National Intellectual Productivity 

This study considers National Innovative Capacity [14], as an independent entity and 

uses its overall schema as a black-box type of concept for the National Intellectual 

Productivity model. As described in the model (see Figure 4), the federal government 

produces the environment, or inputs to the model, then based on these inputs and the 

National Innovative Capacity black-box National Intellectual Productivity is captured. This 

model is laid out in Figure 1.2. 
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Figure 1.2: National Intellectual Productivity Model 
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1.3.3 Patent Considerations  

When measuring national intellectual productivity using patents, it is vital to not 

look at the statistics in a vacuum. There are other factors that play a part in the number of 

patents applied for each year. Among these factors are the fees associated with filing a 

patent. Previous studies, although more focused on the European Patent Office (EPO), 

have shown that a 10% increase in filing fees would lead to a reduction of about 5% in the 

filing of patents [17]. Although, patent fees are unlikely to have an effect on patents 

claiming technological breakthroughs, it is safe to assume that inventions with less 

potential financial gain would be affected by this variable.  

Another variable to keep in mind is that the patent data excludes reissues. If a 

patent has been reissued, which sometimes broadens the scope to include previously 

neglected aspects of the invention, then that patent is only represented once in the 

statistics, and in turn also not represented in this study‟s data and corresponding research.  
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Figure 1.3: Patent Reissues 

 

For completeness purposes and using the U.S Patent and Trademark Office data 

[18], this study has calculated the mean number of patent reissues from 1963 to 2008 as 

314.88 with a standard deviation of 102.91. These data are shown in Figure 1.3.  

 

1.4 Summary 

In Chapter 1, a brief introduction to the ideas of the project is given. First, the 

problem statement and specific aims are provided; the main objective of the study is to 

apply machine learning methods to identify factors that impact national intellectual 

productivity. Knowing that intellectual productivity is a major factor in ensuring a stable 

and prosperous economy, it is important to find the factors that help maintain a high level 

of intellectual productivity. In this study, it is hypothesized that educational policies and 

plans are among the most important factors that affect intellectual productivity; this 
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hypothesis is tested using the historical data representing the number of patents applied for 

and issued in the United States. 
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Chapter 2: Methods 
 

2.1 Overview 

Three classification algorithms; M5 Rules [2] [3] [4], Decision Table [5], and 

Conjunctive Rule , are applied to classify the created data sets. By restricting specific 

attributes from the data set, and then comparing the results of each run, the most relevant 

data becomes evident. The extraneous data that is removed from the data set allows for 

more accurate numeric projections [26]. These algorithms were implemented using the 

WEKA toolkit [1]. 

In addition, the ReliefFAttributeEval [7] [8] [9] algorithm for selection of most 

relevant attributes, which is implemented in WEKA, was used to investigate the most 

predictive attributes of the data set. In order to determine if a combination of economic and 

educational data would produce a more highly accurate forecast of national intellectual 

productivity some pre-processing, in the form of attribute selection was done using the 

entire data set as a whole.  

 

2.1.1 Test Options  

Each classifier was run using three different test options: 10 fold cross-validation, 

49 fold cross-validation (49 fold was used because it is the maximum allowed by the 

dataset), and 66% percentage split. Cross-validation [6], defines and generates a number of 
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folds, n, that randomly reorders and splits the data set into equally sized folds. In each test, 

a single fold among the n folds is used for testing while the remaining n-1folds are used for 

training the classifier. The results are then collected and averaged over all tests. Percentage 

split uses a certain percentage, m, of the data to use for training, and the remaining data, 

100 – m, to perform testing.  

 

2.2 Classifiers 

The classifiers used in this study, i.e. M5, Conjunctive Rule, and Decision Table, 

are models for prediction and classification. This study uses each of these classifiers to 

predict the number of patents applied for and granted using various data sets, and compare 

the results. 

Next the three classifiers are very briefly introduced. 

 

2.2.1 M5Rules  

M5 Generates a decision list for regression problems using separate-and-conquer 

[29]. Each iteration of the algorithm builds a model tree using M5 and makes the "best" leaf 

into a rule. The M5Rules algorithm was chosen as one of the methods used for prediction 

based on the results of previous studies using model trees for classification [19] which 

concludes that versions of the M5 algorithm outperformed a state-of-the-art decision tree 

learner on problems with numeric attributes. As such, this algorithm was used in this paper 

as one of the three algorithms to be compared with other algorithms known to work well 

with numeric attributes. 
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2.2.2 ConjunctiveRules 

 Conjunctive rule is a two-stage algorithm [31] that first produces a set of 

classification rules and then prunes and orders those rules during the execution using 

Reduced Error Pruning [32]. Conjunctive rule implements a single conjunctive rule learner 

that can predict numeric values [6]. The rules created by Conjuctive rule, as other rule 

learners in general, can sometimes create complicated and long rules. Although research 

exists as to the validity and usability of the more complicated rules [30], this study is only 

interested in the overall predictive performance of these rules.  

 

2.2.3 Decision Table 

 Decision table builds and executes a simple Decision Table Majority (DTM) [5] 

with two components consisting of a schema and a body. Decision table [5], in some 

instances, outperforms state-of-the-art classifiers such as C4.5. DTM uses the wrapper 

model [33] [34] to identify optimal attributes during the execution of the classifier. Best-first 

search, the wrapper model algorithm used in this study, works in conjunction with the  

classifier to identify the optimal features of the data set.  

 

2.3 Attribute Selection  

Attribute selection [10] is used to further refine the data that provides the most 

predictive qualities and reduces the number of dimensions describing data [38]. Attribute 

selection, sometimes referred to as feature selection, is the process in which a subset of a 
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given data set is selected based on its connection to the desired input variable. Feature 

selection is an essential step when the goal is to produce high accuracy classifications [39]. 

The attribute selection machine learning method, ReliefFAttributeEval, is used in this 

study to investigate specific attributes to determine which are the most predictive.  

This method is further described next.  

  

2.3.1 ReliefFAttributeEval 

The RELIEF approach [24] [28] describes two fundamental approaches to attribute 

selection as: 

 (1) A filter that works independently of the classifier and  

(2) A wrapper approach that selects attributes to optimize classification using the 

algorithm.  

For the M5 and Conjuctive rule executions this study applies the former - an 

independent filter approach which selects the optimal set of attributes independently of the 

classifier algorithms used. Recent research aimed at optimizing ReliefF [36], referred to as 

Supervised Model Construction (FSSMC), is designed to reduce processing time while 

maintaining accuracy. The data set used in this study does not call for the use of this new 

implementation since processing time in our instance is a matter of seconds.  
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2.4 Data Set Formation 

 

When using machine learning methods to performing statistical analysis such as 

regression, it is preferable to create the data set in such a way that takes advantage of the 

attribute with the highest frequency of measurement. The patent data provided (see Figure 

2.1) by the United States Patent and Trademark Office [23] being yearly, lead to the data 

with a more frequent measurements such as the mortgage rate and savings rate to be 

normalized by taking the yearly maximum, minimum, median, and mean values.  

 

 

 
 

Figure 2.1: U.S. Patents Applied for and Granted (see Appendix D for relating data)  
 

 

2.4.1 Economic Data 

 

The attributes that make up the economic data set are by and large made up of 

macroeconomic factors. Unemployment rate, mortgage rate, savings rate, and gross 

domestic product (GDP) represent this study‟s macroeconomic attributes.  
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2.4.2 Educational Data 

 

Educational data was obtained from the National Center for Educational statistics 

which is a part of the U.S. Department of Education [22]. The attributes that make up the 

educational data set represent a broad range of enrollment statistics. Enrollment statistics, 

both private and public, are broken out by elementary, secondary schools preschool 

through eighth grade, grades nine through twelve, and post secondary degrees.  
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Chapter 3 – Results and Discussion 

 
 

3.1 Overview 

 This section is dedicated to presentation of the results as well as the discussion of 

the obtained results. Three different methods are used for the analyses and their results are 

compared with each other. 

 

3.2 Analysis Conditions  

 As discussed in the previous chapters, three classifier algorithms; M5 Rules, 

Conjunctive Rule, and Decision Table, are used in this study to enumerate national 

intellectual productivity. Each run of the classifier is used to compute the relative absolute 

error of the projected patent attribute to the actual patent data (Table 3.1). Each classifier 

was run using three different test options: 10 fold cross-validation, 49 fold cross-

validation, and 66% percentage split.  

Each classification algorithm applied this study‟s standard economic or educat ional 

data set (see Appendix B and C for more details on these datasets). The U.S. population [20] 

was then added into each data set and the classification tasks were run again. This was 

done to quantify the effect that the raw population has on national intellectual productivity. 
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3.3 Evaluation of Economic Data 

 The attributes that make up the economic data set are primarily made up of 

macroeconomic factors. Unemployment rate, mortgage rate, savings rate, and gross 

domestic product (GDP) represent this study‟s macroeconomic attributes. Using the 

relative absolute error as the indication of predictive capability, Table 3.1 details the 

performance of the economic data set when used to project the number of patent 

applications filed for a given year.  

 

Table 3.1: Economic Results – Patent Applications 

(see Appendix B for input data attributes) 
 

Classification Algorithm and Test Options Relative Absolute Error 
(Data set without  

U.S. Population) 

Relative Absolute Error 
(Data set with U.S. 

Population included) 

M5Rules (cross validation 49 folds)  47.86% 47.86% 

M5Rules (cross validation 10 folds)  56.68% 56.68% 

M5Rules (percentage split 66%)  33.10% 33.10% 

ConjunctiveRule (cross validation 49 folds)  36.99% 36.99% 

ConjunctiveRule (cross validation 10 folds)  42.94% 42.94% 

ConjunctiveRule (percentage split 66%)  29.04% 29.04% 

DecisionTable (cross validation 49 folds)  18.39% 18.81% 

DecisionTable (cross validation 10 folds)  18.29% 18.56% 

DecisionTable (percentage split 66%)  18.90% 21.37% 

 

 

 The results of Table 3.1 show that the Decision Table classifier is the most 

predictive when computing national productivity measured by patent applications. Each 

Decision Table run outperformed all of the other executions of Conjunctive Rule and M5 

Rules. A difference of 38.39% is evident between the least predictive run of M5 and the 
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most predictive run of the decision table, which witnesses to the superiority of the 

performance of the decision table in this modeling task.  

Table 3.2 shows the performance of economic data set when used to predict the 

number of granted patents for a given year.  

 

 

Table 3.2: Economic Results – Granted Patent 
(see Appendix B for input data attributes) 

 

Classification Algorithm and Test Options Relative Absolute Error 

(Data set without  
U.S. Population) 

Relative Absolute Error 

(Data set with U.S. 
Population included) 

M5Rules (cross validation 49 folds)  47.13% 47.13% 

M5Rules (cross validation 10 folds)  55.01% 55.01% 

M5Rules (percentage split 66%)  46.07% 46.07% 

ConjunctiveRule (cross validation 49 folds) 48.93% 48.93% 

ConjunctiveRule (cross validation 10 folds)  43.40% 43.40% 

ConjunctiveRule (percentage split 66%)  43.45% 43.45% 

DecisionTable (cross validation 49 folds)  29.14% 32.11% 

DecisionTable (cross validation 10 folds)  28.02% 28.02% 

DecisionTable (percentage split 66%)  22.64% 31.98% 

 

 

 As shown by Table 3.2, again Decision Table yields the most predictive results 

when used to project the number of patents granted.  Table 3.2 also shows that the 

economic data set is more accurate (by 4.35%) when projecting the number of patents 

applied for than the number granted.  
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3.4 Discussion of Results: Economic Data 

Table 3.3 compares the results achieved by the classifiers for the economic data set. 

As indicated before, Decision Table is the most predictive resource for projecting national 

intellectual productivity (for both patent applications and granted patents), while the 

M5Rules algorithm is the least predictive when using economic data to predict national 

intellectual productivity. 

 

Table 3.3: Economic Results Summary 

(see Appendix B for input data attributes) 
 

Results Summary Patent  
Applications 

Data  
w/o Population 

Patent 
Applications 

Data with 
Population 

Patent 
Granted 

Data 
w/o Population 

Patent 
Granted 

Data With 
Population 

Mean Relative Absolute Error  30.98% 31.54% 38.89% 40.86% 

RAE St andard Deviation 13.86% 13.46% 11.05% 9.06% 

Least Predictive Value  56.68% 56.68% 55.01% 55.01% 

Least Predictive Algorithm  M5Rules 
(cross 

validation  
10 folds) 

M5Rules 
(cross 

validation  
10 folds) 

M5Rules 
(cross 

validation  
10 folds) 

M5Rules 
(cross 

validation  
10 folds) 

Most Predictive Value  18.29% 18.56% 22.64% 28.02% 

Most Predictive Algorithm  DecisionTable  

(cross 
validation 10 

folds) 

DecisionTable 

(cross 
validation 10 

folds) 

DecisionTable 

(percentage 
split 66%) 

DecisionTable 

(cross 
validation 10 

folds) 

 

 

As it can be seen in Table 3.3: 

1. Given the set of economic inputs introduced in this study, Decision Table is 

capable of predicting the number of patents with relatively high accuracy.  
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2. Addition of population as an input does not help with the accuracy of the 

prediction, showing that the information in population cannot be very 

informative once the other input factors are processed by the Decision 

Table. 

  

3.5 Evaluation of Educational Data 

 The attributes that make up the educational data set represent a broad range of 

enrollment statistics. Enrollment statistics, both private and public, are broken out by 

elementary, secondary schools preschool through eighth grade, grades nine through twelve, 

and post secondary degrees.  

As with the economic data set, the relative absolute error is used as the indication 

of predictive capability. Table 3.4 details the performance of the educational data set when 

used to calculate the number of patent applications filed for a given year.  

 

Table 3.4: Educational Results – Patent Applications  
(see Appendix H for DecisionTable actual results and Appendix C for input data attributes) 

 

Classification Algorithm and Test Options Relative Absolute Error 
(Data set without  

U.S. Population) 

Relative Absolute Error 
(Data set with U.S. 

Population included) 

M5Rules (cross validation 49 folds)  45.97% 45.97% 

M5Rules (cross validation 10 folds)  52.36% 52.36% 

M5Rules (percentage split 66%)  41.06% 41.06% 

ConjunctiveRule (cross validation 49 folds) 36.99% 36.99% 

ConjunctiveRule (cross validation 10 folds)  50.70% 50.70% 

ConjunctiveRule (percentage split 66%)  29.04% 29.04% 

DecisionTable (cross validation 49 folds)  30.10% 18.69% 

DecisionTable (cross validation 10 folds)  29.49% 16.34% 

DecisionTable (percentage split 66%)  11.91% 21.37% 
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 Table 3.4 reveals that the Decision Table classifier is the most predictive when 

computing national productivity measured by patent applications. Although not all 

Decision Table runs outperform other classifiers (Conjunctive Rule with a percent split of 

66% was more accurate than Decision Table with 49 folds cross validation), the relative 

absolute error achieved with the 66% split run resulted in a 6.38% improvement over the 

most predictive economic data set execution. A difference of 40.45% was shown between 

the least predictive run of M5 and the most predictive run of the Decision Table.  

Table 3.5 shows the performance of the educational data set when used to predict 

the number of granted patents for a given year. 

 

Table 3.5: Educational Results – Granted Patent 
(see Appendix C for input data attributes) 

 

Classification Algorithm and Test Options Relative Absolute Error 
(Data set without  

U.S. Population) 

Relative Absolute Error 
(Data set with U.S. 

Population included) 

M5Rules (cross validation 49 folds)  51.88%  51.88%  
M5Rules (cross validation 10 folds)  59.87%  59.87%  
M5Rules (percentage split 66%)  45.52%  45.52%  
ConjunctiveRule (cross validation 49 folds)  48.93%  48.93%  
ConjunctiveRule (cross validation 10 folds) 48.12%  48.12%  
ConjunctiveRule (percentage split 66%)  43.45%  43.45%  
DecisionTable (cross validation 49 folds)  30.57%  32.30%  
DecisionTable (cross validation 10 folds)  31.39%  35.53%  
DecisionTable (percentage split 66%)  27.33% 31.98% 
 

 

 As shown by Table 3.5, Decision Table also yields the most predictive results when 

used to predict the number of patents granted (this was also the case with the economic 
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data set).  The educational data set is more accurate, by 15.42%, when predicting the 

number of patents applied for than the number granted.  

 

3.6 Discussion of Results: Educational Data 

Table 3.6 further compares the educational data executions. The Decision Table 

classifier is the most predictive for both patent applications and granted patents. While the 

M5Rules algorithm is the least predictive when using economic data to predict national 

productivity. 

 

Table 3.6: Educational Results Summary 
(see Appendix C for input data attributes) 

 

Results Summary Patent  
Applications 

Data  

w/o Population 

Patent 
Applications 

Data with 

Population 

Patent 
Granted 

Data 

w/o Population 

Patent 
Granted 

Data With 

Population 

Mean Relative Absolute Error  33.76% 32.00% 41.68% 43.26% 

RAE St andard Deviation 12.82% 13.89% 10.99% 9.42% 

Least Predictive Value  52.36% 52.36% 59.87% 59.87% 

Least Predictive Algorithm  M5Rules 
(cross 

validation  
10 folds) 

M5Rules 
(cross 

validation  
10 folds) 

M5Rules 
(cross 

validation  
10 folds) 

M5Rules 
(cross 

validation  
10 folds) 

Most Predictive Value  11.91% 16.34% 27.33% 31.98% 

Most Predictive Algorithm  DecisionTable 
(percentage 

split 66%) 

DecisionTable 
(cross 

validation 10 
folds) 

DecisionTable 
(percentage 

split 66%) 

DecisionTable 
(percentage 

split 66%) 
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As it can be seen in Table 3.6: 

1. Given the set of educational inputs introduced in this study, Decision Table 

is capable of predicting the number of patents with relatively high accuracy.  

2. Addition of population as an input does not help with the accuracy of the 

prediction, showing that the information in population cannot be very 

informative once the other input factors are processed by the Decision 

Table. 

3. An interesting observation is the error of the educational factors in 

predicting the intellectual productivity which is less than that of economic 

factors. This supports the idea that the educational factors may be at least as 

important (if not more important than) the economic factors when 

identifying the future productivity of the nation.  
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3.7 Evaluation of Combined Attribute data 

The combined data set includes both economic and educational attributes (see 

Appendix E for complete listing of attributes that make up the data set). The 

ReliefFAttributeEval attribute selection algorithm was used to aid in the creation of the 

combined attributes data sets (see Appendix G for complete run for patent applications). 

Attribute selection was used to create a data set using both patents applied for and granted 

patents as the attribute evaluator. The top ten ranked attributes for each run make up the 

combined data sets. 

Table 8 details the performance of the combined data set when used to calculate the 

number of patent applications and the number of patents granted. See Appendix E for the 

combined attributes for patents applied for and granted patents.  

 

Table 3.7: Combined Data Results – Applied for and Granted Patents 

(see Appendix E for input data attributes) 
 

Classification Algorithm and Test Options Relative Absolute Error 

(Patents Applied for) 

Relative Absolute Error 

(Granted Patents) 

M5Rules (cross validation 49 folds)  49.66% 50.86% 
M5Rules (cross validation 10 folds) 54.74% 59.87% 
M5Rules (percentage split 66%)  32.92% 45.52% 
ConjunctiveRule (cross validation 49 folds)  36.99% 48.93% 
ConjunctiveRule (cross validation 10 folds)  42.94% 48.12% 
ConjunctiveRule (percentage split 66%)  29.04% 43.45% 
DecisionTable (cross validation 49 folds)  16.54% 30.57% 
DecisionTable (cross validation 10 folds)  16.13% 31.39% 
DecisionTable (percentage split 66%)  11.66% 27.33% 
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3.8 Combined Attribute Summary  

 Table 3.8 presents the results of combined using attributes data set that incorporates 

the information in both economical and educational data to predict intellectual 

productivity.  

 

Table 3.8: Combined Data Results Summary 

(see Appendix E for input data attributes) 
 

Results Summary Patent 
Applications 

Patents 
Granted 

 

Mean Relative Absolute Error  28.61% 41.58%  

RAE St andard Deviation 15.36% 10.89%  

Least Predictive Value  54.74% 59.87%  

Least Predictive Algorithm  M5Rules 
(cross validation 

10 folds) 

M5Rules 
(cross validation 

10 folds) 

 

Most Predictive Value  11.66% 27.33%  

Most Predictive Algorithm  DecisionTable 

(percentage split 
66%) 

DecisionTable 

(percentage split 
66%) 

 

 

 

3.9 Overall Performance When Using Economic, Educational, and Combined 

Datasets 

 Table 3.9 shows the overall performance of each data set when used to predict 

intellectual productivity. The table reveals that the combined attributes data set produced 

the smallest relative absolute error.  
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Table 3.9: Complete Analysis Results Summary 

 

Most Predictive Dat a Set Algorithm  Most  
Predictive  

RAE 

Patent Applications   

Economic Dat a Set (w/o Population)  DecisionTable  
(cross validation 10 folds) 

18.29% 

Educational Data Set (w/o Population)  DecisionTable 
(percentage split 66%) 

11.91% 

Combined Attributes Data Set  DecisionTable 
(percentage split 66%) 

11.66% 

Granted Patents   

Economic Dat a Set (w/o Population) DecisionTable 
(percentage split 66%) 

22.64% 

Educational Data Set (w/o Population) DecisionTable  

(percentage split 66%) 

27.33% 

Combined Attributes Data Set  DecisionTable 
(percentage split 66%) 

27.33% 

 

As Figure 3.1 shows the relative absolute error when predicting the number of 

patents applied for is much smaller than the number of granted patents. The main factor for 

this discrepancy is hypothesized to be because of the time that elapses between when a 

patent is first filed for and it is granted. This hypothesis could be further investigated by 

modifying the underlying data sets to include a two to three year mean of previous years‟ 

data and then performing the analysis described in this study again.  
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Figure 3.1: Complete Analysis Results Chart 

 

From the results presented above, it is clear that the DecisionTable classifier 

outperforms the other two methods for forecasting national intellectual productivity in 

almost all cases.  

Although this study reveals that the population alone is not an indication of 

intellectual productivity, it is understood that the effect of population is apparent through 

enrollment statistics.  

 

3.10 Summary 

This chapter presented the predictive capabilities of both economic and educational 

factors in estimating the intellectual productivity. A combination of educational and 

economic factors was also used as a basis for testing –with the majority of the attributes 

being educational. The results indicates that the Decision Table provides the most suitable 
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model, among the three models tested, in predicting the intellectual productivity from an 

economic, educational, and combined input data. The results also indicated that the 

educational factors can better predict the intellectual productivity, and as such, may be at 

least as important as the economic factors in identifying the nation‟s intellectual 

productivity. Using combined dataset provides slightly better results than just using 

educational data. 
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Chapter 4: Conclusions 
 

 The main conclusions of the study can be summarized as follows: 

 Economic and educational policies were shown to have a tangible relationship with 

national intellectual productivity. 

 Machine learning methods are shown to have the capability of predicting the 

intellectual productivity with accuracies close of 90%. Such models can allow the 

government to better control macroeconomic factors and allocate budget and 

resources towards educational projects in order to optimize intellectual productivity 

of the nation.  

 Education was shown to have the higher impact on intellectual productivity. 

Educational attributes made up nine out of ten attributes for granted patents 

combined data set. Of all the attributes, both economic and educational, post-

secondary enrollment was shown to have the highest impact on intellectual 

productivity. 

 Of the top ten attributes ranked using attribute selection for patents applied for, six 

of the ten are from the educational data set. 

 This finding demonstrates the value of higher education as it relates to national 

productivity. 
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APPENDIX A – Dataset Attributes 

 
 

              NUM_PATENTS_APPLICATIONS 

              NUM_PATENTS_GRANTED 

              UNEMPLOYMENT_RATE 
              PUBLIC_SCHOOL_ENROLLMENT 

              PRIVATE_SCHOOL_ENROLLMENT 

              GDP_Q1 

              GDP_Q2 

              GDP_Q3 
              GDP_Q4 

              MORTGAGE_RATE_MAX 

              MORTGAGE_RATE_MIN 

              MORTGAGE_RATE_MEDIAN 

              MORTGAGE_RATE_MEAN 
              SAVINGS_RATE_MAX 

              SAVINGS_RATE_MIN 

              SAVINGS_RATE_MEDIAN 

              SAVINGS_RATE_MEAN 

              COLLEGE_ENROLLMENT_NUMBER_census 
              EDU_TOTAL_ENROLLMENT_ALL_LEVELS 

              EDU_ELEMENTARY_AND_SECONDARY_TOTAL 

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_TOTAL 

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_PRESCHOOL_THROUGH_8 

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_GRADES_9_TO_12 
              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_TOTAL 

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_PRESCHOOL_TO_8 

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_GRADES_9_TO_12 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_TOTAL 
              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PUBLIC 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PRIVATE 

              US_POPULATION 
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APPENDIX B – Economic Data Attributes 

 

 
              NUM_PATENTS_APPLICATIONS 

              NUM_PATENTS_GRANTED 

              UNEMPLOYMENT_RATE 
              GDP_Q1 

              GDP_Q2 

              GDP_Q3 

              GDP_Q4 

              MORTGAGE_RATE_MAX 
              MORTGAGE_RATE_MIN 

              MORTGAGE_RATE_MEDIAN 

              MORTGAGE_RATE_MEAN 

              SAVINGS_RATE_MAX 

              SAVINGS_RATE_MIN 
              SAVINGS_RATE_MEDIAN 

              SAVINGS_RATE_MEAN 
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APPENDIX C – Educational Data Attributes 
 

 

              NUM_PATENTS_APPLICATIONS 

              NUM_PATENTS_GRANTED 
              PUBLIC_SCHOOL_ENROLLMENT 

              PRIVATE_SCHOOL_ENROLLMENT 

              COLLEGE_ENROLLMENT_NUMBER_census 

              EDU_TOTAL_ENROLLMENT_ALL_LEVELS 

              EDU_ELEMENTARY_AND_SECONDARY_TOTAL 
              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_TOTAL 

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_PRESCHOOL_THROUGH_8 

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_GRADES_9_TO_12 

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_TOTAL 

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_PRESCHOOL_TO_8 
              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_GRADES_9_TO_12 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_TOTAL 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PUBLIC 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PRIVATE 
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APPENDIX D – NUMBER OF PATENTS APPLIED FOR AND 
GRANTED BY THE USPTO 

 
 

 

YEAR 

PATENT 

APPLICATIONS 

PATENTS 

GRANTED 

2008 231588 77501 

2007 241347 79526 

2006 221784 89823 

2005 207867 74637 

2004 189536 84270 

2003 188941 87893 

2002 184245 86971 

2001 177511 87600 

2000 164795 85068 

1999 149825 83905 

1998 135483 80289 

1997 120445 61708 

1996 106892 61104 

1995 123958 55739 

1994 107233 56066 

1993 99955 53231 

1992 92425 52253 

1991 87955 51177 

1990 90643 47391 

1989 82370 50184 

1988 75192 40498 

1987 68315 43519 

1986 65487 38126 

1985 63874 39556 

1984 61841 38373 

1983 59390 32868 

1982 63316 33890 

1981 62404 39218 

1980 62098 37350 

1979 60535 30074 
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1978 61441 41250 

1977 62863 41488 

1976 65050 44280 

1975 64445 46712 

1974 64093 50646 

1973 66935 51501 

1972 65943 51519 

1971 71089 55975 

1970 72343 47073 

1969 68243 50394 

1968 67180 45781 

1967 61651 51274 

1966 66855 54634 

1965 72317 50331 

1964 67013 38410 

1963 66715 37174 
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APPENDIX E – Combined Attributes for Patents Applied for and 
Granted Patents 

 
 

Patents Applied For 
 0.0885   27 EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PUBLIC 

 0.0669   26 EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_TOTAL 

 0.0669   24 EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_PRESCHOOL_TO_8 
 0.0608   17 COLLEGE_ENROLLMENT_NUMBER_census 

 0.0593   13 SAVINGS_RATE_MAX 

 0.0588   22 EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_GRADES_9_TO_12 

 0.0527    5 GDP_Q1 

 0.0516    6 GDP_Q2 
 0.0506    7 GDP_Q3 

 0.0504   28 EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PRIVATE 

 

 

Granted Patents 
 0.06922   26 EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_TOTAL 

 0.06922   24 EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_PRESCHOOL_TO_8 

 0.05677   27 EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PUBLIC 
 0.05212   21 EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_PRESCHOOL_THROUGH_8 

 0.04966   19 EDU_ELEMENTARY_AND_SECONDARY_TOTAL 

 0.04574   20 EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_TOTAL 

 0.04574    3 PUBLIC_SCHOOL_ENROLLMENT 

 0.03455   18 EDU_TOTAL_ENROLLMENT_ALL_LEVELS 
 0.03293   14 SAVINGS_RATE_MIN 

 0.02821    4 PRIVATE_SCHOOL_ENROLLMENT 
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APPENDIX F – Dimensionality of Original Data 

@relat ion data_v2-weka.filters.unsupervised.attribute.Remove-R1 

@attribute NUM_PATENTS_APPLICATIONS numeric  

@attribute NUM_PATENTS_ GRANTED numeric  

@attribute POP_PATENT_APPLIED_FOR_RATIO numeric  

@attribute POP_PATENT_GRANTED_RATIO numeric  

@attribute GRANTED_RATIO_ABOVE_MEAN {NO,YES}  

@attribute APPLIED_FOR_RATION_ABOVE_MEAN {NO,YES}  

@attribute UNEMPLOYMENT_RATE numeric  

@attribute PUBLIC_SCHOOL_ENROLLMENT numeric  

@attribute PRIVATE_SCHOOL_ENROLLMENT numeric  

@attribute GDP_Q1 numeric  

@attribute GDP_Q2 numeric  

@attribute GDP_Q3 numeric  

@attribute GDP_Q4 numeric  

@attribute MORTGAGE_RATE_MAX numeric  

@attribute MORTGAGE_RATE_MIN numeric  

@attribute MORTGAGE_RATE_MEDIAN numeric  

@attribute MORTGAGE_RATE_MEAN numeric  

@attribute SAVINGS_RATE_MAX numeric  

@attribute SAVINGS_RATE_MIN numeric  

@attribute SAVINGS_RATE_MEDIAN numeric 

@attribute SAVINGS_RATE_MEAN numeric  

@attribute COLLEGE_ENROLLMENT_NUMBER_census numeric  

@attribute EDU_TOTAL_ENROLLMENT_ALL_LEVELS numeric  

@attribute EDU_ELEMENTARY_AND_SECONDARY_TOTAL numeric  

@attribute EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_TOTAL numeric  

@attribute EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_PRE_TO_8 n umeric  

@attribute EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_9_TO_12 numeric  

@attribute EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_TOTAL numeric  

@attribute EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_PRESCHOOL_TO_8 numeric  

@attribute EDU_PRIVATE_ELEMENTARY_AND_SECONDA RY_GRADES_9_TO_12 numeric  

@attribute EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_TOTAL numeric  

@attribute EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PUBLIC numeric  

@attribute EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PRIVATE numeric  

@attribute US_POPULATION numeric  
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APPENDIX F (cont’d) – Dimensionality of Original Data 
 

Note: The fu ll dataset contains 47 years worth of data (47 rows). For formatting purposes the entire dataset 

was not shown. Some of the orig inal dataset that was created (i.e. GRANTED_RATIO_ABOVE_MEAN  and 

APPLIED_FOR_RATIO_ABOVE_MEAN) is show below, but was not used during this study‟s 

classification analysis. 
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APPENDIX G – Feature Selection Results 
 

=== Run information for Patent Applications === 

 

Evaluator:    weka.attributeSelection.ReliefFAttributeEval -M -1 -D 1 -K 10 

Search:       weka.attributeSelect ion.Ranker -T -1.7976931348623157E308 -N -1 

Relation:     data_v2-weka.filters.unsupervised.attribute.Remove-R1-

weka.filters.unsupervised.attribute.Remove-R2-6 

Instances:    49 

Attributes:   29 

              NUM_PATENTS_APPLICATIONS 

              UNEMPLOYMENT_RATE 

              PUBLIC_SCHOOL_ENROLLMENT 

              PRIVATE_SCHOOL_ENROLLMENT  

              GDP_Q1 

              GDP_Q2 

              GDP_Q3 

              GDP_Q4 

              MORTGAGE_RATE_MAX 

              MORTGAGE_RATE_MIN 

              MORTGAGE_RATE_MEDIAN 

              MORTGAGE_RATE_MEAN 

              SAVINGS_RATE_MAX 

              SAVINGS_RATE_MIN 

              SAVINGS_RATE_MEDIAN 

              SAVINGS_RATE_MEAN 

              COLLEGE_ENROLLMENT_NUMBER_census 

              EDU_TOTAL_ENROLLMENT_ALL_LEVELS 

              EDU_ELEMENTARY_AND_SECONDARY_TOTAL 

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_TOTAL 

              

EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_PRESCHOOL_THROUGH_8 

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_GRADES_9_TO_12  

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_TOTAL 

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_PRESCHOOL_TO_8  

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_GRADES_9_TO_12 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_TOTAL 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PUBLIC 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PRIVATE 

              US_POPULATION 

Evaluation mode:    evaluate on all training data 

 

 

 

 

 

 

 

 

 



www.manaraa.com

54 

APPENDIX G (cont’d) – Feature Selection Results 
 

=== Attribute Select ion on all input data === 

 

Search Method: 

 Attribute ranking. 

 

Attribute Evaluator (supervised, Class (numeric): 1 NUM_PATENTS_APPLICATIONS):  

 ReliefF Ranking Filter 

 Instances sampled: all 

 Number of nearest neighbours (k): 10 

 Equal influence nearest neighbours 

 

Ranked attributes: 

 0.0885   27 EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PUBLIC 

 0.0669   26 EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_TOTAL 

 0.0669   24 EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_PRESCHOOL_TO_8 

 0.0608   17 COLLEGE_ENROLLMENT_NUMBER_census 

 0.0593   13 SAVINGS_RATE_MAX 

 0.0588   22 EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_GRADES_9_TO_12  

 0.0527    5 GDP_Q1 

 0.0516    6 GDP_Q2 

 0.0506    7 GDP_Q3 

 0.0504   28 EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PRIVATE 

 0.0465    8 GDP_Q4 

 0.0443   18 EDU_TOTAL_ENROLLMENT_ALL_LEVELS  

 0.0345   29 US_POPULATION 

 0.0187   19 EDU_ELEMENTARY_AND_SECONDARY_TOTAL 

 0.0153   20 EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_TOTAL 

 0.0153    3 PUBLIC_SCHOOL_ENROLLMENT  

-0.016    16 SAVINGS_RATE_MEAN 

-0.0211    2 UNEMPLOYMENT_RATE 

-0.0277   21 EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_PRESCHOOL_TO_8  

-0.0332   25 EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_GRADES_9_TO_12  

-0.0352   15 SAVINGS_RATE_MEDIAN 

-0.0365   14 SAVINGS_RATE_MIN 

-0.0395    4 PRIVATE_SCHOOL_ENROLLMENT  

-0.0395   23 EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_TOTAL 

-0.0701   10 MORTGAGE_RATE_MIN 

-0.0784   11 MORTGAGE_RATE_MEDIAN 

-0.0807   12 MORTGAGE_RATE_MEAN 

-0.0948    9 MORTGA GE_RATE_MAX 
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APPENDIX H – Decision Table Results 

 
=== Run information for Educational Dataset  === 

 

Scheme:       weka.classifiers.rules.DecisionTable -X 1 -R -S "weka.attributeSelection.BestFirst -D 1 -N 5"  

Relation:     data_v2-weka.filters.unsupervised.attribute.Remove-R1-

weka.filters.unsupervised.attribute.Remove-R2-7,10-21-weka.filters.unsupervised.attribute.Remove-R16 

Instances:    49 

Attributes:   15 

              NUM_PATENTS_APPLICATIONS 

              PUBLIC_SCHOOL_ENROLLMENT 

              PRIVATE_SCHOOL_ENROLLMENT 

              COLLEGE_ENROLLMENT_NUMBER_census 

              EDU_TOTAL_ENROLLMENT_ALL_LEVELS 

              EDU_ELEMENTARY_AND_SECONDARY_TOTAL 

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_TOTAL 

              

EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_PRESCHOOL_THROUGH_8  

              EDU_PUBLIC_ELEMENTARY_AND_SECONDARY_SCHOOLS_GRADES_9_TO_12  

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_TOTAL 

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_PRESCHOOL_TO_8  

              EDU_PRIVATE_ELEMENTARY_AND_SECONDARY_GRADES_9_TO_12  

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_TOTAL 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PUBLIC 

              EDU_POSTSECONDARY_DEGREE_INSTITUTIONS_PRIVATE 

Test mode:    split 66.0% train, remainder test 

 

=== Classifier model (full training set) === 

 

Decision Table: 

 

Number of t rain ing instances: 46 

Number of Rules : 11 

Non matches covered by Majority class. 

 Best first. 

 Start set: no attributes 

 Search direct ion: forward 

 Stale search after 5 node expansions 

 Total number of subsets evaluated: 61 

 Merit of best subset found: 15087.07 

Evaluation (for feature selection): CV (leave one out)  

Feature set: 5,1 
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APPENDIX H (cont’d) – Decision Table Results 
 

Rules: 

====================================================================  

EDU_TOTAL_ENROLLMENT_ALL_LEVELS NUM_PATENTS_APPLICATIONS   

====================================================================  

'(-inf-58842.9]'                 64245.2 

'(58842.9-60535.8]'             68037.0 

'(60535.8-62228.7]'             81014.33333333333 

'(62228.7-63921.6]'             96190.0 

'(63921.6-65614.5]'             115595.5 

'(65614.5-67307.4]'             120940.0 

'(67307.4-69000.3]'             157310.0 

'(69000.3-70693.2]'             177511.0 

'(70693.2-72386.1]'             187574.0 

'(72386.1-inf)'                  225646.5 

====================================================================  

 

 

 

Time taken to build model: 0.16 seconds 

 

=== Predictions on test split === 

 

 inst#,    actual, p redicted, error 

     1 120445     121187.5      742.5   

     2  61651      68266.75    6615.75  

     3 221784     236467.5    14683.5   

     4 207867     236467.5    28600.5   

     5  60535      65254.667   4719.667 

     6 189536     186593      -2943     

     7  68243      69107.286    864.286 

     8  65487      65254.667   -232.333 

     9 164795     149825     -14970     

    10  61841      65254.667   3413.667 

    11  67013      68266.75    1253.75  

    12  66935      69107.286   2172.286 

    13  62404      65254.667   2850.667 

    14  62098      65254.667   3156.667 

 

=== Evaluation on test split === 

=== Summary === 

 

Correlation coefficient                  0.9905 

Mean absolute error                   6229.898  

Root mean squared error               9891.5053 

Relative absolute error                 11.914  %  

Root relat ive squared error             16.4414 %  

Total Number of Instances               14      
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APPENDIX I – Source and Links to Data 

 

Educational Data Sources 

 

 U.S. Department of Education  

o http://www.ed.gov/about/landing.jhtml 
 

 National Center for Educational statistics - U.S. Department of Education Institute 
of Educational Sciences 

o http://nces.ed.gov/programs/digest/d08/tables/dt08_003.asp 
 

Economic Data Sources 

 

 U.S. Gross Domestic Product  

o Department of Commerce (DOC), Bureau of Economic Analysis 
 http://www.eia.doe.gov/emeu/aer/txt/ptb1601.html 

 

 U.S Unemployment Rate 

o Department of Labor, Bureau of Labor Statistics 
 http://www.bls.gov/cps/tables.htm 

o The Wall Street Journal 

 http://online.wsj.com/public/resources/documents/JOBSHISTORY0
9.html 

 

 U.S. Savings Rate 

o U.S. Department of Commerce, Bureau of Economic Analysis  
 http://www.bea.gov/national/nipaweb/Nipa-Frb.asp 

 NIPATable.csv 

 

 U.S. Mortgage Rate  

o Board of Governors of the Federal Reserve System 
 Federal Reserve Bank of St. Louis 

 http://research.stlouisfed.org/fred2/series/MORTG/download
data?cid=114 

o MORTG.xls 
 
 

 

 

http://nces.ed.gov/programs/digest/d08/tables/dt08_003.asp
http://www.eia.doe.gov/emeu/aer/txt/ptb1601.html
http://www.bls.gov/cps/tables.htm
http://online.wsj.com/public/resources/documents/JOBSHISTORY09.html
http://online.wsj.com/public/resources/documents/JOBSHISTORY09.html
http://www.bea.gov/national/nipaweb/Nipa-Frb.asp
http://research.stlouisfed.org/fred2/series/MORTG/downloaddata?cid=114
http://research.stlouisfed.org/fred2/series/MORTG/downloaddata?cid=114
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APPENDIX I (cont’d) – Source and Links to Data 

 

 

U.S. Population Data Source 

 

 Department of Commerce (DOC), U.S. Bureau of the Census. 
o http://www.eia.doe.gov/emeu/aer/txt/ptb1601.html 

 

 

U.S. Patent Data 

 

 U.S. Patent and Trademark Office, Electronic Information Products Division Patent 

Technology Monitoring Team (PTMT), U.S. Patent Statistics Chart Calendar Years 
1963 – 2008. 

o http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm 
o http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.pdf 

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm
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